Virtual Keys, Users
Track Spend, Set budgets and create virtual keys for the proxy
Grant other's temporary access to your proxy, with keys that expire after a set duration.
- 🔑 UI to Generate, Edit, Delete Keys (with SSO)
- Deploy LiteLLM Proxy with Key Management
- Dockerfile.database for LiteLLM Proxy + Key Management here
Setup
Requirements:
- Need a postgres database (e.g. Supabase, Neon, etc)
- Set
DATABASE_URL=postgresql://<user>:<password>@<host>:<port>/<dbname>
in your env - Set a
master key
, this is your Proxy Admin key - you can use this to create other keys- Set on config.yaml set your master key under
general_settings:master_key
, example below - Set env variable set
LITELLM_MASTER_KEY
(Note: either set this on the config.yaml or in your env whatever is more convenient for you)
- Set on config.yaml set your master key under
(the proxy Dockerfile checks if the DATABASE_URL
is set and then intializes the DB connection)
export DATABASE_URL=postgresql://<user>:<password>@<host>:<port>/<dbname>
You can then generate temporary keys by hitting the /key/generate
endpoint.
Step 1: Save postgres db url
model_list:
- model_name: gpt-4
litellm_params:
model: ollama/llama2
- model_name: gpt-3.5-turbo
litellm_params:
model: ollama/llama2
general_settings:
master_key: sk-1234 # [OPTIONAL] if set all calls to proxy will require either this key or a valid generated token
database_url: "postgresql://<user>:<password>@<host>:<port>/<dbname>"
Step 2: Start litellm
litellm --config /path/to/config.yaml
Step 3: Generate temporary keys
curl 'http://0.0.0.0:8000/key/generate' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{"models": ["gpt-3.5-turbo", "gpt-4", "claude-2"], "duration": "20m","metadata": {"user": "ishaan@berri.ai"}}'
/key/generate
Request
curl 'http://0.0.0.0:8000/key/generate' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{
"models": ["gpt-3.5-turbo", "gpt-4", "claude-2"],
"duration": "20m",
"metadata": {"user": "ishaan@berri.ai"},
"team_id": "core-infra",
"max_budget": 10,
}'
Request Params:
duration
: Optional[str] - Specify the length of time the token is valid for. You can set duration as seconds ("30s"), minutes ("30m"), hours ("30h"), days ("30d").key_alias
: Optional[str] - User defined key aliasteam_id
: Optional[str] - The team id of the usermodels
: Optional[list] - Model_name's a user is allowed to call. (if empty, key is allowed to call all models)aliases
: Optional[dict] - Any alias mappings, on top of anything in the config.yaml model list. - https://docs.litellm.ai/docs/proxy/virtual_keys#managing-auth---upgradedowngrade-modelsconfig
: Optional[dict] - any key-specific configs, overrides config in config.yamlspend
: Optional[int] - Amount spent by key. Default is 0. Will be updated by proxy whenever key is used. https://docs.litellm.ai/docs/proxy/virtual_keys#managing-auth---tracking-spendmax_budget
: Optional[float] - Specify max budget for a given key.model_max_budget
: Optional[dict[str, float]] - Specify max budget for each model,model_max_budget={"gpt4": 0.5, "gpt-5": 0.01}
max_parallel_requests
: Optional[int] - Rate limit a user based on the number of parallel requests. Raises 429 error, if user's parallel requests > x.metadata
: Optional[dict] - Metadata for key, store information for key. Example metadata = {"team": "core-infra", "app": "app2", "email": "ishaan@berri.ai" }
Response
{
"key": "sk-kdEXbIqZRwEeEiHwdg7sFA", # Bearer token
"expires": "2023-11-19T01:38:25.838000+00:00" # datetime object
"key_name": "sk-...7sFA" # abbreviated key string, ONLY stored in db if `allow_user_auth: true` set - [see](./ui.md)
...
}
Upgrade/Downgrade Models
If a user is expected to use a given model (i.e. gpt3-5), and you want to:
- try to upgrade the request (i.e. GPT4)
- or downgrade it (i.e. Mistral)
- OR rotate the API KEY (i.e. open AI)
- OR access the same model through different end points (i.e. openAI vs openrouter vs Azure)
Here's how you can do that:
Step 1: Create a model group in config.yaml (save model name, api keys, etc.)
model_list:
- model_name: my-free-tier
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8001
- model_name: my-free-tier
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8002
- model_name: my-free-tier
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8003
- model_name: my-paid-tier
litellm_params:
model: gpt-4
api_key: my-api-key
Step 2: Generate a user key - enabling them access to specific models, custom model aliases, etc.
curl -X POST "https://0.0.0.0:8000/key/generate" \
-H "Authorization: Bearer <your-master-key>" \
-H "Content-Type: application/json" \
-d '{
"models": ["my-free-tier"],
"aliases": {"gpt-3.5-turbo": "my-free-tier"},
"duration": "30min"
}'
- How to upgrade / downgrade request? Change the alias mapping
- How are routing between diff keys/api bases done? litellm handles this by shuffling between different models in the model list with the same model_name. See Code
Grant Access to new model
Use model access groups to give users access to select models, and add new ones to it over time (e.g. mistral, llama-2, etc.)
Step 1. Assign model, access group in config.yaml
model_list:
- model_name: text-embedding-ada-002
litellm_params:
model: azure/azure-embedding-model
api_base: "os.environ/AZURE_API_BASE"
api_key: "os.environ/AZURE_API_KEY"
api_version: "2023-07-01-preview"
model_info:
access_groups: ["beta-models"] # 👈 Model Access Group
Step 2. Create key with access group
curl --location 'http://localhost:8000/key/generate' \
-H 'Authorization: Bearer <your-master-key>' \
-H 'Content-Type: application/json' \
-d '{"models": ["beta-models"], # 👈 Model Access Group
"max_budget": 0,}'
/key/info
Request
curl -X GET "http://0.0.0.0:8000/key/info?key=sk-02Wr4IAlN3NvPXvL5JVvDA" \
-H "Authorization: Bearer sk-1234"
Request Params:
- key: str - The key you want the info for
Response
token
is the hashed key (The DB stores the hashed key for security)
{
"key": "sk-02Wr4IAlN3NvPXvL5JVvDA",
"info": {
"token": "80321a12d03412c527f2bd9db5fabd746abead2e1d50b435a534432fbaca9ef5",
"spend": 0.0,
"expires": "2024-01-18T23:52:09.125000+00:00",
"models": ["azure-gpt-3.5", "azure-embedding-model"],
"aliases": {},
"config": {},
"user_id": "ishaan2@berri.ai",
"team_id": "None",
"max_parallel_requests": null,
"metadata": {}
}
}
/key/update
Request
curl 'http://0.0.0.0:8000/key/update' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{
"key": "sk-kdEXbIqZRwEeEiHwdg7sFA",
"models": ["gpt-3.5-turbo", "gpt-4", "claude-2"],
"metadata": {"user": "ishaan@berri.ai"},
"team_id": "core-infra"
}'
Request Params:
key: str - The key that needs to be updated.
models: list or null (optional) - Specify the models a token has access to. If null, then the token has access to all models on the server.
metadata: dict or null (optional) - Pass metadata for the updated token. If null, defaults to an empty dictionary.
team_id: str or null (optional) - Specify the team_id for the associated key.
Response
{
"key": "sk-kdEXbIqZRwEeEiHwdg7sFA",
"models": ["gpt-3.5-turbo", "gpt-4", "claude-2"],
"metadata": {
"user": "ishaan@berri.ai"
}
}
/key/delete
Request
curl 'http://0.0.0.0:8000/key/delete' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{
"keys": ["sk-kdEXbIqZRwEeEiHwdg7sFA"]
}'
Request Params:
- keys: List[str] - List of keys to delete
Response
{
"deleted_keys": ["sk-kdEXbIqZRwEeEiHwdg7sFA"]
}
/user/new
Request
All key/generate params supported for creating a user
curl 'http://0.0.0.0:4000/user/new' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data-raw '{
"user_id": "ishaan1",
"user_email": "ishaan@litellm.ai",
"user_role": "admin",
"team_id": "cto-team",
"max_budget": 20,
"budget_duration": "1h"
}'
Request Params:
- user_id: str (optional - defaults to uuid) - The unique identifier for the user.
- user_email: str (optional - defaults to "") - The email address associated with the user.
- user_role: str (optional - defaults to "app_user") - The role assigned to the user. Can be "admin", "app_owner", "app_user"
Possible user_role
values
"admin" - Maintaining the proxy and owning the overall budget
"app_owner" - employees maintaining the apps, each owner may own more than one app
"app_user" - users who know nothing about the proxy. These users get created when you pass `user` to /chat/completions
- team_id: str (optional - defaults to "") - The identifier for the team to which the user belongs.
- max_budget: float (optional - defaults to
null
) - The maximum budget allocated for the user. No budget checks done ifmax_budget==null
- budget_duration: str (optional - defaults to
null
) - The duration for which the budget is valid, e.g., "1h", "1d"
Response
A key will be generated for the new user created
{
"models": [],
"spend": 0.0,
"max_budget": null,
"user_id": "ishaan1",
"team_id": null,
"max_parallel_requests": null,
"metadata": {},
"tpm_limit": null,
"rpm_limit": null,
"budget_duration": null,
"allowed_cache_controls": [],
"key_alias": null,
"duration": null,
"aliases": {},
"config": {},
"key": "sk-JflB33ucTqc2NYvNAgiBCA",
"key_name": null,
"expires": null
}
Request Params:
- keys: List[str] - List of keys to delete
Response
{
"deleted_keys": ["sk-kdEXbIqZRwEeEiHwdg7sFA"]
}
Advanced
Upperbound /key/generate params
Use this, if you need to control the upperbound that users can use for max_budget
, budget_duration
or any key/generate
param per key.
Set litellm_settings:upperbound_key_generate_params
:
litellm_settings:
upperbound_key_generate_params:
max_budget: 100 # upperbound of $100, for all /key/generate requests
duration: "30d" # upperbound of 30 days for all /key/generate requests
Expected Behavior
- Send a
/key/generate
request withmax_budget=200
- Key will be created with
max_budget=100
since 100 is the upper bound
Default /key/generate params
Use this, if you need to control the default max_budget
or any key/generate
param per key.
When a /key/generate
request does not specify max_budget
, it will use the max_budget
specified in default_key_generate_params
Set litellm_settings:default_key_generate_params
:
litellm_settings:
default_key_generate_params:
max_budget: 1.5000
models: ["azure-gpt-3.5"]
duration: # blank means `null`
metadata: {"setting":"default"}
team_id: "core-infra"
Restrict models by team_id
litellm-dev
can only access azure-gpt-3.5
litellm_settings:
default_team_settings:
- team_id: litellm-dev
models: ["azure-gpt-3.5"]
Create key with team_id="litellm-dev"
curl --location 'http://localhost:4000/key/generate' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data-raw '{"team_id": "litellm-dev"}'
Use Key to call invalid model - Fails
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-qo992IjKOC2CHKZGRoJIGA' \
--data '{
"model": "BEDROCK_GROUP",
"messages": [
{
"role": "user",
"content": "hi"
}
]
}'
{"error":{"message":"Invalid model for team litellm-dev: BEDROCK_GROUP. Valid models for team are: ['azure-gpt-3.5']\n\n\nTraceback (most recent call last):\n File \"/Users/ishaanjaffer/Github/litellm/litellm/proxy/proxy_server.py\", line 2298, in chat_completion\n _is_valid_team_configs(\n File \"/Users/ishaanjaffer/Github/litellm/litellm/proxy/utils.py\", line 1296, in _is_valid_team_configs\n raise Exception(\nException: Invalid model for team litellm-dev: BEDROCK_GROUP. Valid models for team are: ['azure-gpt-3.5']\n\n","type":"None","param":"None","code":500}}%
Set Budgets - Per Key
Set max_budget
in (USD $) param in the key/generate
request. By default the max_budget
is set to null
and is not checked for keys
curl 'http://0.0.0.0:8000/key/generate' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{
"metadata": {"user": "ishaan@berri.ai"},
"team_id": "core-infra",
"max_budget": 10,
}'
Expected Behaviour
- Costs Per key get auto-populated in
LiteLLM_VerificationToken
Table - After the key crosses it's
max_budget
, requests fail
Example Request to /chat/completions
when key has crossed budget
curl --location 'http://0.0.0.0:8000/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-ULl_IKCVFy2EZRzQB16RUA' \
--data ' {
"model": "azure-gpt-3.5",
"user": "e09b4da8-ed80-4b05-ac93-e16d9eb56fca",
"messages": [
{
"role": "user",
"content": "respond in 50 lines"
}
],
}'
Expected Response from /chat/completions
when key has crossed budget
{
"detail":"Authentication Error, ExceededTokenBudget: Current spend for token: 7.2e-05; Max Budget for Token: 2e-07"
}
Set Budgets - Per User
LiteLLM exposes a /user/new
endpoint to create budgets for users, that persist across multiple keys.
This is documented in the swagger (live on your server root endpoint - e.g. http://0.0.0.0:8000/
). Here's an example request.
curl --location 'http://localhost:8000/user/new' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{"models": ["azure-models"], "max_budget": 0, "user_id": "krrish3@berri.ai"}'
The request is a normal /key/generate
request body + a max_budget
field.
Sample Response
{
"key": "sk-YF2OxDbrgd1y2KgwxmEA2w",
"expires": "2023-12-22T09:53:13.861000Z",
"user_id": "krrish3@berri.ai",
"max_budget": 0.0
}
Tracking Spend
You can get spend for a key by using the /key/info
endpoint.
curl 'http://0.0.0.0:8000/key/info?key=<user-key>' \
-X GET \
-H 'Authorization: Bearer <your-master-key>'
This is automatically updated (in USD) when calls are made to /completions, /chat/completions, /embeddings using litellm's completion_cost() function. See Code.
Sample response
{
"key": "sk-tXL0wt5-lOOVK9sfY2UacA",
"info": {
"token": "sk-tXL0wt5-lOOVK9sfY2UacA",
"spend": 0.0001065,
"expires": "2023-11-24T23:19:11.131000Z",
"models": [
"gpt-3.5-turbo",
"gpt-4",
"claude-2"
],
"aliases": {
"mistral-7b": "gpt-3.5-turbo"
},
"config": {}
}
}
Custom Auth
You can now override the default api key auth.
Here's how:
1. Create a custom auth file.
Make sure the response type follows the UserAPIKeyAuth
pydantic object. This is used by for logging usage specific to that user key.
from litellm.proxy._types import UserAPIKeyAuth
async def user_api_key_auth(request: Request, api_key: str) -> UserAPIKeyAuth:
try:
modified_master_key = "sk-my-master-key"
if api_key == modified_master_key:
return UserAPIKeyAuth(api_key=api_key)
raise Exception
except:
raise Exception
2. Pass the filepath (relative to the config.yaml)
Pass the filepath to the config.yaml
e.g. if they're both in the same dir - ./config.yaml
and ./custom_auth.py
, this is what it looks like:
model_list:
- model_name: "openai-model"
litellm_params:
model: "gpt-3.5-turbo"
litellm_settings:
drop_params: True
set_verbose: True
general_settings:
custom_auth: custom_auth.user_api_key_auth
3. Start the proxy
$ litellm --config /path/to/config.yaml
Custom /key/generate
If you need to add custom logic before generating a Proxy API Key (Example Validating team_id
)
1. Write a custom custom_generate_key_fn
The input to the custom_generate_key_fn function is a single parameter: data
(Type: GenerateKeyRequest)
The output of your custom_generate_key_fn
should be a dictionary with the following structure
{
"decision": False,
"message": "This violates LiteLLM Proxy Rules. No team id provided.",
}
decision (Type: bool): A boolean value indicating whether the key generation is allowed (True) or not (False).
message (Type: str, Optional): An optional message providing additional information about the decision. This field is included when the decision is False.
async def custom_generate_key_fn(data: GenerateKeyRequest)-> dict:
"""
Asynchronous function for generating a key based on the input data.
Args:
data (GenerateKeyRequest): The input data for key generation.
Returns:
dict: A dictionary containing the decision and an optional message.
{
"decision": False,
"message": "This violates LiteLLM Proxy Rules. No team id provided.",
}
"""
# decide if a key should be generated or not
print("using custom auth function!")
data_json = data.json() # type: ignore
# Unpacking variables
team_id = data_json.get("team_id")
duration = data_json.get("duration")
models = data_json.get("models")
aliases = data_json.get("aliases")
config = data_json.get("config")
spend = data_json.get("spend")
user_id = data_json.get("user_id")
max_parallel_requests = data_json.get("max_parallel_requests")
metadata = data_json.get("metadata")
tpm_limit = data_json.get("tpm_limit")
rpm_limit = data_json.get("rpm_limit")
if team_id is not None and team_id == "litellm-core-infra@gmail.com":
# only team_id="litellm-core-infra@gmail.com" can make keys
return {
"decision": True,
}
else:
print("Failed custom auth")
return {
"decision": False,
"message": "This violates LiteLLM Proxy Rules. No team id provided.",
}
2. Pass the filepath (relative to the config.yaml)
Pass the filepath to the config.yaml
e.g. if they're both in the same dir - ./config.yaml
and ./custom_auth.py
, this is what it looks like:
model_list:
- model_name: "openai-model"
litellm_params:
model: "gpt-3.5-turbo"
litellm_settings:
drop_params: True
set_verbose: True
general_settings:
custom_key_generate: custom_auth.custom_generate_key_fn
[BETA] Dynamo DB
Step 1. Save keys to env
AWS_ACCESS_KEY_ID = "your-aws-access-key-id"
AWS_SECRET_ACCESS_KEY = "your-aws-secret-access-key"
Step 2. Add details to config
general_settings:
master_key: sk-1234
database_type: "dynamo_db"
database_args: { # 👈 all args - https://github.com/BerriAI/litellm/blob/befbcbb7ac8f59835ce47415c128decf37aac328/litellm/proxy/_types.py#L190
"billing_mode": "PAY_PER_REQUEST",
"region_name": "us-west-2"
"user_table_name": "your-user-table",
"key_table_name": "your-token-table",
"config_table_name": "your-config-table",
"aws_role_name": "your-aws_role_name",
"aws_session_name": "your-aws_session_name",
}
Step 3. Generate Key
curl --location 'http://0.0.0.0:8000/key/generate' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{"models": ["azure-models"], "aliases": {"mistral-7b": "gpt-3.5-turbo"}, "duration": null}'